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ABSTRACT 

Dispersion in connecting tubing represents a major contribution to extra-column band broadening in 
liquid chromatography, a factor that is particularly important in miniaturized high-performance liquid 
chromatographic systems. Although most analyses of extra-column effects are based on the Taylor-Aris 
theory of dispersion in tubes and the additivity of variances, these approaches are known to be inaccurate 
under some conditions, but alternative theoretical methods have not been verified experimentally. These 
aspects have been addressed by a combination of theory and experiment. Experimental elution curves in 
single tubes are shown to match closely the theoretical predictions based on solutions to the convective 
diffusion equation, without the need for any adjustable parameters. For tubes in series, use of a convolu- 
tion relationship allows the accurate prediction of the response of the overall system when radial mixing 
between the two tubes is present. Although injection and detection systems have not been analysed in 
detail, they may contribute to discrepancies between theory and experiment if they are not well matched 

with the remainder of the chromatographic system. 

INTRODUCTION 

Extra-column contributions to overall peak width in chromatography arise from 
dispersion in injection and detection systems and in connecting tubing. Such 
dispersion, which results from the interaction of non-uniform velocity and concentra- 
tion profiles in the component of interest, reduces the resolution of the separation, and 
efforts are thus made to minimize it relative to the band spreading occurring in the 
column itself. A crucial factor in such efforts is minimization of the volume of the 
extra-column component, but given the continuing development of miniaturized 
high-performance liquid chromatographic (HPLC) systems, even these endeavours 
have bounds. Analysis of the extra-column effects then becomes important. Although 
this in itself obviously does not reduce actual band spreading, it can aid in the analysis 
of affected data and in the design of components with improved performance 
characteristics as regards extra-column dispersion. 

Most analyses of extra-column contributions to band spreading (e.g., [1,2]) have 
been based on two assumptions. The first assumption is that the various contributions 
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to band spreading are all independent, as a result of which the overall variance is 
simply the sum of the individual contributions [1,3]. The second refers specifically to 
dispersion in connecting tubing, where it is generally assumed that the Taylor [4]-Aris 
[5] result holds, namely that the axial spreading, in terms of the concentration averaged 
across the tube cross-section, is Fickian, with the dispersion coefficient equal to 
uzd2/192D, where u is the average velocity, d the tube diameter and D the solute 
diffusivity. The Taylor-Aris result predicts that an impulse input of solute will spread 
such that it always has a Gaussian axial profile. 

That both these assumptions are questionable under at least some conditions 
was recognized by Golay and Atwood [6,7]. They noted that the variances contributed 
by successive components of the chromatographic system are additive only if there is 
complete radial mixing at the junction between the components. This is because the 
input-output relationship for each component is generally expressed in terms of 
average concentrations, with the implicit assumption that the concentration is, in fact, 
uniform across the cross-section of the stream concerned. 

Golay and Atwood [6] also stressed that, as was clear from the original 
derivations [4,5], the Taylor-Aris result is valid only for sufficiently long tubes (length 
L >> ud’/D). They showed by both computations and experiment that the axial profile 
of average concentration follows a complex evolution in shape due to the interaction of 
axial convection and radial diffusion. This evolution, which has been widely 
documented [t&12], can be summarized as follows. The initial bolus of solute is 
distorted by the laminar velocity profile into a bullet shape, the length of which 
increases linearly with time. If the radially averaged concentration is considered, the 
axial profile adopts a “box-car” [6] shape which. as shown by Taylor [4], decays 
hyperbolically in concentration with time as it grows in length. The distortion caused by 
the velocity profile results in steep radial concentration gradients, down which radial 
diffusion thus occurs. This occurs most visibly near the rear, where solute is mainly in 
the region of steep velocity gradients near the wall; inward diffusion here gives rise to 
a bump at the rear of the box-car. At longer times, however, outward diffusion near the 
snout of the bullet-shaped profile into the slower moving region near the wall also 
dissipates the front end of the box-car, leading ultimately to the Gaussian profile 
predicted by the Taylor-Aris theory. Because of the simultaneous decrease in the 
box-car concentration and increase in the concentration of the Taylor-Aris (dis- 
persion) peak, the elution profile at intermediate times may display a double peak 
comprising a hyperbolic convection peak followed by a dispersion peak. Such results 
have been observed experimentally [6,13-l 61. 

Issues such as those outlined above are seldom taken into account in analyses of 
extra-column dispersion in chromatography, possibly owing in part to the complexity 
of the behaviour predicted and observed. However, in view of the wide availability of 
computational power, the routine implementation of more detailed approaches should 
be possible. It is therefore important to ensure the reliability of the theory in predicting 
observed experimental behaviour. Similar qualitative trends have been observed in 
both computational and experimental studies, but direct comparisons of theory and 
experiment [6,7] have been largely in terms of such parameters as peak variance. The 
objectives of this work were to perform direct comparisons of experimental data 
obtained on standard extra-column systems with the predictions of convective 
diffusion models. Both aspects discussed above, namely the responses of both single 
tubes and systems consisting of more than one component, are addressed. 
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THEORY 

Dispersion in luminar tube ,jlow 
For fully developed laminar flow in a tube the local solute concentration c(z, r, t) 

satisfies the convective diffusion equation 

where U is the centre-line velocity, r, z and t are the radial and axial coordinates and 
time, respectively, a is the tube radius and D is the solute diffusivity. For the problem of 
dispersion of a bolus of solute of mass A4 which is initially uniformly distributed across 
the tube cross-section, eqn. 1 is to be solved subject to the radial boundary condition 

dc 
z=O at r=O,a (2) 

denoting symmetry at the centre-line and no flux at the walls, and the initial condition 

~(z,r,O)=~ at t=O 
na” 

Two axial boundary conditions are also required in principle; one is the absence of 
solute in fluid entering the system, 

c=O at z=O (4) 

while the need for the other falls away because of the solution method used, as 
discussed below. 

This problem has been studied extensively [&12,17] and a number of solution 
procedures have been proposed. We have recently reported an approach which is 
particularly efficient to implement computationally [12]. It is based on the neglect of 
the axial diffusion term in eqn. 1, thus also eliminating the need for a second axial 
boundary condition. Omission of the axial diffusion term can be corrected for exactly 
using a Gaussian smoothing method [18], but this correction is unnecessary for the 
systems of interest here, as it is important only at very low flow-rates or at extremely 
short times. As full details of the solution procedure are given elsewhere [ 121, all that is 
noted here is that the solution provides values of the dimensionless concentration 

7ta4 UC 
Cc- 

DM 

as a function of the dimensionless variables 

Dt 
r=-- 

a2 (6) 
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Thus time is scaled relative to the characteristic time for radial diffusion, while the axial 
coordinate is transformed such that its origin moves with the mean velocity of the fluid. 
The solution is independent of any dimensionless parameters, an aspect which is 
significant in the presentation of computational results and the interpretation of 
experimental data. 

Although the solution procedure provides local concentrations C, it is usually 
some average concentration that is of interest. The most widely studied average, which 
is also the one on which the Taylor-Aris result is based, is the straightforward area 
average. 

(7) 

also referred to as the “slice content” [6,7]. However, as noted by Golay and Atwood 
[6], a different average is appropriate when the mean concentration in an eluting 
stream is examined. This average, usually called the cup-mixing average [19], weights 
the local concentration by the rate at which the fluid emerges from the tube, i.e., by the 
velocity profile: 

C, = 4 
s 

C(l - t2)5dt 

0 

(8) 

Multiplying the cup-mixing concentration by the mean velocity thus gives the rate at 
which solute emerges from the tube. 

Because averaging eliminates dependence on 5, C and C, are functions of T and 
c only. However, elution curves provide concentration data at a fixed value of z = L., 
and this introduces an independent parameter. This quantity is most conveniently 
expressed in dimensionless terms as a dimensionless minimum transit time (transit time 
based on the centre-line velocity U), t, = LD/Ua’. The elution curve is then just the 
value of the relevant average concentration as a function of T at i = rm - it. Fig. 1, 
which shows the predicted cup-mixing responses for a range of rm values, illustrates the 
evolution of the elution curve from an essentially hyperbolic convection peak, through 
a double-peaked response, to the near-Gaussian Taylor-Aris form where only the 
dispersion peak is seen. 

Response of components in series 

The response of a system consisting of multiple components in series is generally 
obtained by assuming additivity of mean retention times and varances, a result which 
may be obtained as shown by, for instance, Sternberg [3]. Such results are, however, 
a consequence of a more general set of results using the theory of residence time 
distributions or, more generally, age-distribution functions [20,21]. The residence time 
distribution (RTD) or exit age distribution E(t) gives the distribution of time spent by 
fluid molecules leaving the system. In principle, it is found by marking all the molecules 
entering the system at a given instant, and then measuring the fraction of marked 
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0 50 0.75 

T (dimensionless) 

Fig. 1. Evolution of theoretical cup-mixing elution curves as a function dimensionless minimum transit 
time. 5, values: -, 0.10; --, 0.15; --. 0.20; ---, 0.30; --, 0.40. 

particles which emerge from the system as a function of time. For a solute leaving 
a chromatographic component, then, E(r) is simply the normalized cup-mixing 
concentration, measured at the exit, for an experiment in which the input was a perfect 
impulse. In practice, however, the distinction between cup-mixing and other averages 
is not always noted, and in fact it is often implicitly assumed that the concentration 
across the exit is uniform. 

There are other implicit assumptions in the use of RTDs which are worth bearing 
in mind, although they are rarely limiting. One is that of linearity of all components; in 
chromatography this may cause problems under overload conditions. Another 
assumption is that components in series are non-interacting, i.e., the RTD of one 
component is not affected by that of any other. Further, as RTDs are based on the 
amounts entering or leaving components without regard for spatial inhomogeneities at 
the entrace and exit, treating components in series assumes that the stream leaving one 
component is well mixed before it enters another. Atwood and Golay [7] also 
recognized the need for this requirement for variances to be additive. If all these 
assumptions are satisfied, the overall RTD for a combination of two components in 
series can be obtained from the individual RTDs using the convolution equation 

PO,211 

E(t) = &(tt)&(f - ft)dtt s 
0 

(9) 

This relationship can obviously be generalized to one for any number of components in 
series; it is, in fact, just a particular example of the use of a convolution equation to 
account for an arbitrary input function (i.e., one other than a perfect impulse). 
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Using the definitions of the mean residence time 

5 

i= rE(t)dt 
s 
0 

(10) 

and the variance 

K 

d = 
s 

(t - f)2E(t)df (11) 

0 

of the RTD, it is easy to show [20,2 l] by substitution of eqn. 9 that both mean residence 
times and variances are additive. The more detailed RTD approach is thus consistent 
with the additivity of mean retention times and variances used ubiquitously in 
chromatography. The full RTD is used in this work, however, because it allows the full 
shapes of elution curves to be examined. This is particularly important in the context of 
extra-column effects, where the responses can be very different in form from the ideal 
Gaussian shape. This peak shape information can be more informative regarding the 
nature of extra-column dispersion processes, and it can also provide a more 
challenging test of model validity in comparisons with real experimental data. The 
experiments reported later in which two extra-column components were used in series 
are therefore compared with predictions based on eqn. 9, with the individual 
component RTDs based on results of the kind shown in Fig. 1. 

EXPERIMENTAL 

The aim of the experiments performed was to obtain solute response curves for 
impulse injections into components both individually and in series. The components of 
interest were simply straight sections of tubing of various dimensions, as discussed in 
more detail below, to allow comparison with the responses predicted using the theory 
outlined above. The experimental system was thus selected so as to match closely the 
idealized conditions on which the models are based. 

As pressure drops in open tubes are relatively low, a Harvard Apparatus (South 
Natick, MA, USA) Model 909 syringe pump was used as the primary source of solvent 
under pressure. A syringe pump has the advantage of delivering steady flows without 
pulsation, unlike the delivery from a high-pressure dual-piston HPLC ‘pump. 
However, to evaluate the effect of flow pulsation under standard chromatographic 
conditions, a Waters Assoc. (Milford, MA, USA) Model 6000 HPLC pump was also 
used and results were compared with the syringe pump results. Both pumps were 
calibrated by volume collection over a fixed period to time, but owing to differences in 
control of the two pumps, discrepancies of up to about 2% in the flow-rates for 
corresponding experiments were possible. 

The injection valve was chosen so as to approach the impulse input condition in 
eqn. 3. A Rheodyne (Cotati, CA, USA) Model 7520 valve with a 0.5-4 injection 
passage on the stator was used. Detection was accomplished using an Isco (Lincoln, 
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TABLE I 

TEST COMPONENT PARAMETERS 

System Diameter Length 

(cm) (cm) 

Volume Diffusion time. 

011) al/D 6) 

A 0.025 100.0 50.7 19.7 
B 0.051 100.0 202.7 78.7 

C 0.102 100.0 810.7 314.7 
D 0.051 158.8 321.9 78.7 

NE, USA) Model V4 UVvisible absorbance detector with computerized data 
acquisition and a response time as low as 0.05 s. The flow cell was a standard Z-pattern 
type with an illuminated volume of 1 ~1 and a path length of 0.5 cm. The connecting 
tubing joining the test section to the flow cell was 0.013 cm in diameter and about 10 cm 
long. Hence the volume of the injection and detection system was small enough (a few 
~1) that its effect on rand 0’ was small. both in absolute terms and relative to the 
contributions of the test sections themselves. 

The test components were cylindrical tubes of various diameters, purchased 
precut from Upchurch Scientific (Oak Harbor, WA, USA). Four different geometries 
were examined, as shown in Table I. For each set. the tube volume and the diffusion 
time scale d/D are also shown. The effect of placing components in series was 
examined in two ways, each for two pieces of tubing of equal length with the same 
combined length as shown in Table I. First, interaction of components without radial 
mixing was studied by using a zero dead volume connector (Alltech, Deerfield, IL, 
IJSA). intended to make two tubes in series behave as a single tube with the same 
overall Icngth. Second. forced convective radial mixing was introduced by including 
a stainless-steel precolumn filter (Model A315; Upchurch Scientific) in the junction 
between components. 

Benzyl alcohol (Aldrich, Milwaukee, WI, USA) was used as the solute and 
distilled, de-ionized water as the solvent. The binary diffusivity of benzyl alcohol in 
water has been measured experimentally as 0.82. lob5 cm2/s at 20°C a value which is 
within less than 10% of the values predicted by three widely used equations for 
estimating diffusivities in liquids [22]. Detection was at the maximum absorbance 
wavelength, namely 252 nm. 

RESULTS AND DISCUSSION 

Single tubes 
The experimental system was intended to approximate as closely as possible the 

model system described by eqns. 14. However, as more than one approach to 
averaging is possible, as is illustrated by eqns. 7 and 8, it is important to base 
comparisons between theory and experiment on the appropriate average. For the type 
of detector used here, in which the optical path is axial, the area-average concentration 
is clearly inappropriate. As discussed by Atwood and Golay [7], the cup-mixing is, 
strictly speaking, also inappropriate. There is, however, good reason to expect the 
cup-average to provide a reasonable approximation to the measured results. As the 
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Z pattern of the detector flow cell disrupts the laminar flow sufficiently to induce 
mixing of the stream entering the cell, the solute flux into the cell (product of 
volumetric flow-rate and concentration) should be determined by the cup-mixing, and 
not the area-average concentration. Further, as the volume of the flow cell is much 
smaller than that of the dispersive components being tested, the measured concentra- 
tion will be only weakly dependent on flow cell characteristics relative to its 
dependence on the concentration in the entering stream. 

Fig. 2 shows a comparison of normalized experimental elution curves for each of 
the two pumps with theoretical results for the cup-mixing and area-average 
concentration for a system with T, = 0.163 (system D in Table I). The results here and 
in subsequent figures are presented with r as the independent variable, i.e., with time 
scaled by the diffusion time a’/D, to allow subsequent comparison of multiple 
experimental systems on a single plot; real time scales can be recovered using the a2/D 
values shown for each system in Table I. The cup-mixing concentration profile in Fig. 
2 is clearly closer to the experimentally observed curves than is the mean concentration; 
it should be emphasized that the theoretical curves were found with no adjustable 

parameters. All comparisons shown below are thus with the computed cup-mixing 
concentration. It is interesting that experimental results obtained using a detector 
measuring absorbance across a cross-section of the tube [16] show better agreement 
with the theoretical curves for the mean concentration than for the cup-mixing 
concentration. In Fig. 2, the difference in behaviour between the experiments with 
different pumps is negligible. Most of the experimental curves below were obtained 
with the syringe pump, but in some cases the HPLC pump was used. 

Figs. 3-6 show experimental and computed elution profiles for r,,, values of 
0.108, 0.163, 0.218 and 0.447, respectively. In each instance except the first, 
experimental curves are shown for the four different tube geometries listed in Table I, 

,,’ 
I I I 

0.00 0.25 0.50 0 75 1 

T (dimensionless) 

10 

Fig. 2. Comparison of theoretical and experimental elution curves for single tube (system D) with t, = 
0.163. Experimental: -, syringe pump; --, HPLC pump. Theoretical: - -, cup mixing; ---, area average. 
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Fig. 3. Comparison of theoretical and experimental elution curves for single tubes of different geometries 
with 5, = 0.108. Experimental: --, B; --, C; ---, D; -, theoretical. 

with the appropriate 2, value attained for different tubes by adjusting the flow rate. 
Although only one experimental curve is shown for each set of parameters, each 
experiment was replicated several times; the curves are highly reproducible, the only 
significant variation being that resulting from errors in recording the injection time. 
These errors. which were a consequence of using a manual injection valve and thus 

I 

0.25 0.50 

T (dimensionless) 

Fig. 4. Comparison of theoretical and experimental elution curves for single tubes of different geometries 
with t, = 0.163. Experimental: --, A; --, B; - --, C; --, D; -, theoretical. 



244 A. SHANKAR, A. M. LENHOFF 

0.00 0.25 0 50 0.75 1 .oo 1.25 

T (dimensionless) 

Fig. 5. Comparison of theoretical and experimental elution curves for single tubes of different geometries 
with t, = 0.218. Lines as in Fig. 4. 

were less than 1 s, are also the main reason for the shifts among the different curves on 
the plots. They become less noticeable at larger ~~ values as the time scales of the 
experiments increase. Agreement between theoretical and experimental curve shapes is 
generally excellent, especially considering, as noted previously, that the theoretical 
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0.0 0.5 1 .o 1.5 

+ (dimensionless) 

Fig. 6. Comparison of theoretical and experimental elution curves for single tubes of different geometries 
with T,,, = 0.447. Lines as in Fig. 4. 
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computations involve no adjustable parameters. Agreement is poorest for system A, 
where the test-component volume is smallest, and the response is thus most likely to be 
significantly affected by transport in the injection and detection system. This is why 

a result for system A is not shown in Fig. 3. where the minimum transit time would be 
about 2 s. It is interesting, however, that in Fig. 4 the system A elution peak is of 
approximately the same width as predicted by theory. 

A discrepancy between theory and experiment seen for small T, (Fig. 3, and 
system C result in Fig. 4) is that the experimental convective peaks are sharper than 
predicted by theory. A change of the order of 10% in z, would be sufficient to bring the 
theoretical curve into better agreement, but a more likely explanation for the 
discrepancy is one recognizing the nature of the injection. As noted previously, the 
injection valve tubing is in line with the test section. However, the former is of only 
0.013 cm diameter, i.e., smaller than any tubing used as a test section. Consequently, 
the injection may be biased toward the centre of the tube used as test section, instead of 
the uniform distribution denoted by eqn. 3. As the convection peak arises from 
material initially near the tube centre, an enlarged convection peak may result from the 
non-uniform initial distribution. That the widest tubing (system C) is the only one 
affected in Fig. 4 would appear to support this conjecture. 

Tubes in series 
The experiments to investigate interacting components in series were based on 

essentially the same systems for which results are shown in Figs. 3-6, the key difference 
being that each tube now consisted of two parts of equal length. These two parts were 
connected by either a zero dead volume fitting to minimize radial mixing or by an 
in-line solvent filter to maximize it. Fig. 7 shows a comparison of experimental and 
theoretical results for system B for the two linkage modes, for an overall r, of 0.163; 

0 00 025 0 50 0 75 1.00 

r (dimensionless) 

Fig. 7. Comparison of theoretical and experimental elution curves for system B with z,,, = 0.163, showing 
effect of various tube conligurations. Experimental: -, single tube; --, two tubes with zero dead volume 
connector; --, two tubes with filter. Theoretical: ---, single tube: --, convolution. 
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the corresponding single-tube experimental result is also shown for reference. 
Theoretical curves are shown for the convolution of two tubes (eqn. 9) and for a single 
tube of the same total length. 

For the zero dead volume fitting, the response is very similar to the theoretical 
and experimental curves for a single tube. On the other hand, the convolution 
approach appears to allow the overall response to be calculated fairly accurately for 
the system incorporating the in-line filter between the two tubes, at least in the example 
shown. Both the theoretical and experimental curves here are significantly smoother 
than in the absence of mixing, and it is also noticeable that the standard parameters 
used to characterize response peaks, such as variances, peak widths at various ordinate 
values, etc., may be misleading regarding the nature of the responses. However, it 
follows from the accuracy of the convolution result that the overall variance of the 
response is equal to the sum of the two contributing variances, as is generally assumed 
in practice. 

Additional comparisons of responses with the in-line filter are shown in Figs. 
S-10 for three different z, values; the system A response is omitted from Fig. 8 for the 
same reason as in the corresponding single-tube case. Agreement between theory and 
experiment is again excellent for larger t, values, but for small r,, as in Fig. 8, the 
experimental curves display features such as convection peaks which are more 
characteristic of systems without mixing. This could be due to the steeper radial 
concentration gradients at small ~~~ making good radial mixing at the junction more 
difficult. As the nature of the mixing process due to the filter is poorly understood, it is 
not clear what the effect is of the higher rates used to attain small transit times. Here, as 
in Fig. 4 discussed above, it is again the widest tubing that appears most susceptible to 
enlargement of the convection peak, again supporting the suggestion that inadequate 
radial transport is involved. 

6- 

5- 

2- 

l- 

/ 
0.25 

T (dimensionless) 

Fig. 8. Comparison of theoretical and experimental elution curves for tubes in series with T, = 0.108. 
Experimental: --, B; - -, C; ---, D. -, Theoretical (convolution). 
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IO 0.25 0.50 0 75 1 

T (dimensionless) 

Fig. 9. Comparison of theoretical and experimental elution curves for tubes in series with T, = 0.163. Lines 
as in Fig. 8. 

CONCLUSIONS 

Two issues concerning the modelling of extra-column dispersion have been 
addressed. First, we have shown that it is possible to predict the shape of elution peaks 
for single tubes fairly accurately, without the need for adjustable parameters. These 
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05 10 1.5 
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Fig. 10. Comparison of theoretical and experimental elution curves for tubes in series with T,,, = 0.447. 
Lines as in Fig. 8. 
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peaks are different in shape from those predicted by the widely used Taylor-Aris 
theory, which is unlikely to be adequate for the tube geometries most frequently used in 
chromatographic practice. 

The second issue addressed was that of predicting elution curves from a system 
consisting of multiple components in series. When radial mixing between components 
is adequate, the convolution approach allows the individual RTDs to be combined 
fairly accurately, so that under these conditions variances should indeed be additive, as 
is usually assumed. Although the convolution approach proved to be inaccurate 
in some systems studied here, only relatively poor radial mixing could be accomplished 
under the conditions studied; the lateral mixing occurring naturally during flow 
through a packed columns should help to justify the assumption of additivity of 
variances in actual chromatographic systems. However, it is important that the proper 
approach be used to find the variances of the individual components, especially the 
connecting tubing. Another consequence under conditions where convolution is 
warranted is that much of the “tine structure” of the individual elution curves, such as 
convection peaks, is smoothed out by the convolution process, so that anomalous 
peaks are unlikely to arise due to extra-column effects under normal chromatographic 
conditions. 

ACKNOWLEDGEMENTS 

This work was supported by the National Science Foundation under grant no. 
CBT-8657185. We thank Dr. C. N. Trumbore for the loan of the syringe pump and the 
injection valve. 

REFERENCES 

I K. Hupe, R. .I. Jonker and G. Rozing, J. Chromarogr., 285 (1984) 253. 
2 K. W. Freebairn and J. H. Knox, Chromatographia. 19 (1985) 37. 
3 J. C. Sternberg, Adv. Chromatogr., 2 (1966) 205. 

4 G. Taylor, Proc. R. Sot. London, Ser. A, 317 (1953) 186. 
5 R. Aris, Proc. R. Sot. London, Ser. A. 235 (1956) 67. 
6 M. J. E. Golay and J. G. Atwood, J. Chromatogr., 186 (1979) 353. 
7 J. G. Atwood and M. J. E. Golay, J. Chromatogr., 218 (1981) 97. 

8 W. N. Gill and V. Ananthakrishnan, AIChE J.. 13 (1967) 801. 
9 J. S. Yu, ASME J. Appl. Mech., 46 (1979) 750. 

10 J. S. Yu, ASME J. Appl. Mech., 48 (1981) 217. 

11 K. P. Mayock, J. M. Tarbell and J. L. Duda, Sep. Sri. Technol., 15 (1980) 1285. 

12 A. Shankar and A. M. Lenhoff. AIChE J.. 35 (1989) 2048. 

13 C. G. Caro, .I. Physical., 185 (1966) 501. 
14 F. M. Kelleher and C. N. Trumbore. Anal. Biochem., 137 (1984) 20. 

15 C. N. Trumbore, M. Grehlinger, M. Stowe and F. M. Kelleher, J. Chromatogr., 322 (1985) 443. 
16 T. Korenaga, F. Shen and T. Takahashi. AlChE J., 35 (1989) 1395. 

17 J. S. Vrentas and C. M. Vrentas, AIChE J.. 34 (1988) 1423. 

18 J. C. Wang and W. E. Stewart, AIChE J., 29 (1983) 493. 
19 R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena. Wiley, New York, 1960, p, 297. 
20 0. Levenspiel, Chemical Reaction Engineering. J. Wiley, New York. 2nd ed.. 1972, pp. 253-265. 
21 G. F. Froment and K. B. Bischoff, Chemical Reactor Analvsis and Design, Wiley, New York, 1979, pp. 

592606. 
22 R. C. Reid, J. M. Prausnitz and T. K. Sherwood, The Properties of Gases and Liquids, McGraw-Hill, 

New York, 3rd ed., 1977, p. 577. 


